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FREQUENTIST ESTIMATION
METHOD OF MOMENTS

e Random sample (Xl,Xz,---,Xn) where all n observations are from the same parametric distribution,

F(x|6). @ is avector (length p) of unknown parameters.

o Let 4 (0)= E(Xk | 6?). Using a random sample of independent observations, the empirical estimate of

n k
Zj:l Xj
n

the kth moment is i, = , i.e. the kth moment of the sample (kth empirical moment).

Definition 13.1 — A method of moment estimate of & is any solution of the p equations x; (0) = j1,
k=12,--,p.
e Comments:

o Although definition 13.1 can be generalized to consider any set of moments, results are usually
better when using the smallest positive integer moments.

o Sometime we must use higher moments to solve the system (for instance X ~U(—6,6) cannot be

solved using the first moment)
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o ltis necessary to check that the relevant moments exist.

o There is no guarantee that the equations will have a solution or, if there is a solution, that it will be
unique

Example 13.1 - Use the method of moments to estimate parameters for the exponential, gamma and
Pareto distributions for Data Set B from chapter 11.

The exponential distribution has one parameter but the Pareto and the Gamma have 2 parameters
each, so we will need 2 empirical moments.
20 20 5
~ Zj:lxj Zj:lxj
20

= =x=14244 and i =
Hy 20 X My

=13238441.9

Exponential distribution: £(X) =6, then 6 =1424.4

Gamma Distribution: E(X)=a0 and E(X?*)= a(a + 1)492, then we must solve the system

The solution is 1 .
a(a+1)0* =13238441.9 oo )5 14244 a0 61

a

{ 00 =1424.4 @=0.181
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2
Pareto distribution: E(X)= 0 and E(X°)= 20 for a > 2 The system is then
a—1 (a-1)(a-2)
0 =1424.4
(a-1) o & =2.442
X 5 g2 and the solutionis 1 5 = 2053.985
=13238441.9 B ‘
(a-1)(a-2)
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Estimated distributions
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‘ Expon. Gamma ~—Pareto

Exponential Gamma Pareto

PAr(X >1000) = 0.4956 0.2686 0.3796
PAr(X > 5000) = 0.0299 0.0850 0.0491
, 5.69x107'° 6.73x107° 3.73x107*
Pr(X > 50000) = OFX 13X 13X
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PERCENTILE MATCHING

o Let 7,(0) be the 100g% percentile of the random variable X, that is, F(7Z'g (6)] 6?) =g.If Fis
continuous this equation will have, at least, one solution. The empirical estimate of this percentile is Ty,

the corresponding percentile of the random variable.

e Definition 13.2 — A percentile matching estimate of & is any solution of the p equations T, (0)= frgk ,

k=12,---,p, where 81,82, &, arep arbitrarily chosen percentiles. From the definition of percentile,

the equations can be written as F(ﬁgk | 6’) =g, k=12,---,p.

e Comments:

o There is no guarantee that the equations will have a solution or, if there is a solution, that the

solution is unique.

o For discrete random variables percentiles are not always well defined.
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e How to compute empirical percentiles?

o There is some controversy on the subject (the exception is when we compute the median).

o Most of the time we need an interpolation scheme but there is no “consensual” solution
(Hyndman and Fan (1996) present nine different methods and the function quantile in R allows
us to use any of these methods). We will use Definition 13.3 (type=6 for the quantile function).

e Definition 13.3 — The smoothed empirical estimate of a percentile is found by
i, =(=h)x +hx,,, where j=|(n+1)g |, h=(n+1)g—j,| |indicatesthe greatest integer function

and x;y < X,y < X3 <0 <X, are the order statistics from the sample.

e Comments:

o Unless the sample has two or more data points with the same values, no two percentiles will have
the same value.

o Using this definition, we can only compute 7, for 1/ (n+1)<g<n/(n+1).

o The choice of which percentiles to use leads to different estimates. This is a strong point against the
percentile matching method except when there is a reason to choose a particular set of percentiles.
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Example 13.2 — Use percentile matching to estimate parameters for the exponential and Pareto
distribution for Data set B.
Without more information, the choice of the percentiles is quite arbitrary. We will follow Loss Models.

Exponential: We can use the median (the parameter is the mean, i.e. a location parameter).

Sample median: 7,5 =0.5x384 +0.5x457 =420.5
We must solve the equation
0.5=F(#,5|0) < 0.5=1—exp(—420.5/60) < In2=420.5/6 < 6 = 606.65

Comment: compare this estimate with the one obtained using method of moments (1424.4) and think
about the importance of the highest observation.

Pareto: use the 30t and the 80" percentiles.

30%: j=|21x0.3]=6; h=21x0.3-6=0.3; #,, =0.7x161+0.3x243 =185.6
80%: j=|21x0.8|=16; h=21x0.8-16=0.8; #,, =0.2x1193+0.8x1340=1310.6
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The equations are

0.7 = LA In(0.7) =é&1In LA
{0.3:F(l85.6|0,a) 185.6+60 185.6+6

Remm it =
0.8=F(1310.6]6,) @ 0
0.2 :[ In(0.2) =& 1In

>

1310.6+ 0 1310.6+6

G In(0.7) i ( G In(0.7) i
In(f) - In(185.6 + 6) 4 In(0) - In(185.6 + 6)
In(0.2) _ In(6)—In(1310.6 + 6) = In(0.2) In(f)—In(1310.6+6) _ 0
[In(0.7) In(@)-In(185.6+68)  |In(0.7) In(d)—In(185.6+0)

This system can be solved numerically.

That is ¢

Using Excel’s solver we obtain 0 =715.0315 for the second equation and, reporting this value in the
first equation we get & =1.545589 (see next slide) and using R we obtain similar results (slides 10-YY)

Of course, the choice of different percentiles leads to different estimates.

Exercise: Use percentiles 0.1 and 0.9, obtain 9 and &, and comment.

8



Instituto Superior de Economia e Gestao

Using EXCEL'’s solver

T

A | B
1
2 _Theta 10
3

2 Equation 2.870072

6 Alpha 0.119952
A

Solver Parameters - u
Set Objective: [ SBs4
To: ) Max ) Min @ Value Of: 0

By Changing Variable Cells:
852

Subject to the Constraints:

- ’ Add
’ Change ]
’ Delete ]
’ Reset All

- ’ Load/Save

Make Unconstrained Variables Mon-Megative

> Theta  715.0332

Equation -2.02E-06

5 Alpha  1.545592

—
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Using R
We can choose among different approaches. 2 of them are:
e Function nlegslv (library nlegslv) to solve systems of nonlinear equations
e Function nlm (basic packages) to obtain a solution using a nonlinear minimization

In both cases we need to define the set of equations as a function. Depending on when we abandon
the search for an analytical solution, we can define:

> fnl=function (x) {
+ # x[1]=alpha x[2]=theta

+ eql=0.7-(x[2]/(185.6+x[2]))"x[1]
+ eg2=0.2-(x[2]/(1310.06+x[2])) "x[1]
+ return(c(eql,eqg?))

+ }

or

> fn2=function (x) {

+ # x[1]=alpha x[2]=theta

- egl=1log(0.7)-x[1]1*log(x[2]/(185.6+x[2]))
+  eq2=1og(0.2)-x[1]*log (x[2]/(1310.6+x[2]))
+ return(c(eql,eq?))

+ }

10
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or

> fn3=function (x) {

+ # x=theta

+ egl=(1log(0.2)/1og(0.7))-(log(x)-1log(1310.6+x))/ (log(x)-1log(185.6+x))
+ return (eql)

+ }

Using nleqgslv

> require(nleqgslv)

11



Instituto Superior de Economia e Gestao

> nleqgslv(0.5,fn3) # using fn3

5y
[1] 715.032 Solution

Sfvec How close to zero

[1] 4.887363e-09

Stermcd termination code as integer: 1 is OK
[1] 1

Smessage

[1] "Function criterion near zero"

Sscalex

[1] 1

Snfcnt number of function evaluations, excluding ..
[1] 11

$snjcnt number of Jacobian evaluations

[1] 1

Siter number of iterations

(1] 11

12
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> nlegslv(c(1,0.5),fn1)

5 5

[1] 1.54559 715.03199

Sfvec

[1] -2.676970e-12 -5.139861le-12
Stermcd

(11 1

Smessage

[1] "Function criterion near zero"
Sscalex

(11 1 1

Snfcnt

[1] 78

sSnjcnt

(11 1

Siter

[1] 54

13
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> nlegslv(c(1,0.5),fn2)

5

[1] 1.54559 715.03199

Sfvec

[1] 1.122602e-12 3.778755e-12
Stermcd

[1] 1

Smessage

[1] "Function criterion near zero"
Sscalex

(1] 1 1

Snfcnt

[1] 38

sSnjcnt

(11 3

Siter

[1] 29

14
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Using nlm

> fnl.sg=function(x) return(crossprod (fnl(x), fnl (x)))
> fn2.sg=function(x) return (crossprod(fn2(x), fn2(x)))
> fn3.sg=function(x) return(fn3(x)"2)

> nlm(fnl.sqg,c(1,5))
S minimum’
[1] 1.130887e-12
Sestimate
[1] 1.545571 715.021786
Sgradient
[1] -2.820609e-07 6.197286e-10
Scode
[1] 1
Siterations
[1] 38

15
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> nlm(fn2.sq,c(1,5))
S minimum’
[1] 2.188255e-10
Sestimate
[1] 1.545437 714.922321
Sgradient
[1] -4.369224e-06 6.098373e-09
Scode
[1]1 2
Siterations
[1]1 35

> nlm(fn3.s9,5)
S minimum’
[1] 3.826888e-13
Sestimate
[1] 715.0316
Sgradient
[1] -1.95615e-11
Scode
(1] 1
Siterations
[1] 15

16
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MAXIMUM LIKELIHOOD ESTIMATION

e Why ML estimation?

o More efficient estimators

o To cover some annoying cases: An important limitation of moment and percentile matching
estimators is that all the observations are from the same random variable. If, for instance, half the
observations have a deductible of 50 and the other half a deductible of 100 it is not clear to what
the sample mean should be equated to.

o More calculus involved

o Sometimes ML estimators are quite sensitive to “extreme” observations

e To use Maximum Likelihood Estimators
o We must have a data set with n events, A4,4,,---,4,, where 4; is whatever was observed for the jth
observation (usually Aj. is a value or an interval)
o The variables X, X,,---,X, behind the events 4,,4,,---,4, do not need to have the same

probability distribution but they must be independent and their distribution must depend on the
same parameter vector 6.

17
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e Definition 13.4 — The likelihood function is L(6) = Hn Pr(X; € A, | 6) and the maximum likelihood
j=1 J J
estimate of @ is the vector that maximizes the likelihood function.

e Comments:

o Notation — Usually the likelihood function is written as L(8| x,,x,,--+,x,). Because observed data
can take many forms, we will write L(8) without clarifying the conditioning values.

o Independence among events — As the events 4, 4,,---, 4, are assumed independent, the
likelihood is the probability, given a particular value of @, of observing what was observed, since
L(6) :szlpr()(j €A, |0)=Pr(X, e4,X,ed,, X, €4,10).

o Theoretical — When the probabilistic model is continuous and the observed event is a point,

Aj = xj, we know that Pr(X; € 4, [ #) =0 and we will use the density function. The rationale for
such a procedure corresponds to interpret the observed value as being in a neighborhood of X; and
to approximate the probability Pr(x; —¢ <X, <x, +&|0) by means of 2¢ f(x; [0), where

f(xj | @) is the density function at x ;. Dropping out the multiplicative constants leads to use the

density f(x, [6) as the contribution to the likelihood function.

18
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Multiplicative constants that are independent of the elements of the vector & can be removed
from the likelihood function since they will not affect the maximum likelihood estimate. Removing
such constants does not change the solution but it will change the value of the likelihood.

There is no guarantee that the likelihood function has a maximum at eligible parameter values.
When maximizing the likelihood function the existence of local maxima can hide the global
maximum.

Log-likelihood — In many situations it is easier to use the log-likelihood, that is, to maximize
(0)=InL(O) = Z';zlln(Pr(Xj €4, | 49)) instead of L(#) (as the natural logarithm is a strictly
increasing function the solution is unchanged).

ln(Pr(Xj €4 | 6’)) is called the individual contribution of observation j to the log likelihood.

In many situations numerical methods are needed.

19
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COMPLETE INDIVIDUAL DATA
When there is no truncation and no censoring and the value of each observation is recorded, it is easy to

write the log-likelihood function, /(0) = ijllanj (x;10).

e Example 13.4 — Using Data set B, determine the maximum likelihood estimate for an exponential
distribution, for a gamma distribution where « is known to equal 2, and for a gamma distribution
where both parameters are unknown.

Exponential distribution

f(x|0)=0"e"?, x>0,0>0.

1=y in(g'e™’)=3" (~-no-x,0")
@)= (-0 +x,67)=-n0" +nx0”
'0)=0=0=—n0"'+nx0> <0=x

@)= (67-2x,67)=n67(1-2x6")

As 6"(9)}023 =-—n67? <0 we get § =x =1424.4 (same estimate as with the method of moments)

20
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Gamma distribution with « = 2 - similar to the previous case
Gamma distribution with unknown parameters — numerical maximization

xa—l e—x/<9

T 9" I(a)

/(a,6) =Z’;=lln(f(xj |a,9)=2j=1((a—1)1nxj ~alnf-x,0" —~nT(ar))

To maximize in order to « requires the derivative of InI'(er) which is not an explicit function (we can

, x>0, a,0>0.

Jf(x|e,0)

obtain a solution in orderto ¢, 8 = x / «, but the problem remains). Consequently, we need to use
numerical techniques.

We illustrate the procedure using Microsoft EXCEL solver and R.

21
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EXCEL
E6  ( fe |
| A | B | < o L_E__J F G H |
1|alfa 2
2 |[theta 500
3 |
4_loglik= -182.8027631 sum of column 1ln f£(x j)

X ] In £(x J) |
21| -9,187379331 < LN (GAMMADIST (AB;5B51;5B52; FALSE) )
82 -8.18649695
115 -7.9142840¢68

11 | 126 -7.84493429%

12 155 -T.69579108

=
,:'-.DDE'L-JE‘I|U1

22
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T v = PRRLE & SRPCREFIEL NG e g F RSILA S S

R e

rSoiuer Parameters ﬂ i A B C
19alfa 0.556015TT96
e F e on 2 |theta 2561.142391
; 3
e e ) Min © Yohie OF 4 loglik= -162.2934031 sum
By Changing Variable Cells: 5
| $BS1:6852 £ 6
Subject to the Constraints: 7 X_:I In £ (X_:I:I
Add 8 27| —-6.307636437)
9 g2 —a.822161 714
Sl 10 115 -6.98516574
Delete 11 1261 —7.030005585
Reset Al
Load/Save

Then @ =0.55616 and 0 =2561.14. If necessary, we can use a different starting point and/or we can

add constraints.

23
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Using R — Two among many solutions.
> x=c(27,82,115,126,155,161,243,294,340,384,457,680,855,877,974,
+ 1193,1340,1884,2558,15743)
> mean (x)
] 1424.4

[1
>
> # 1ST SOLUTION: USE FUNCTION nlm
> # As nlm minimizes a function we introduce minus the log-lik
> minusloglikgamma=function (param, x) {
+ alpha=param([1l]; theta=param[Z2]
+ —sum (dgamma (x, shape=alpha, scale=theta, 1og=TRUE) )
+ }
> param.start=c(1,1000) # starting values - important point
> outl=nlm(minusloglikgamma,param.start,x=x) # Options available
Warning messages:
l: In dgamma (x, shape, scale, log) : NaNs produced
2: In nlm(minusloglikgamma, param.start, x = x)
NA/Inf replaced by maximum positive value
>

24
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>outl

Sminimum

[1] 162.2934 # Minus the log-likelihood
Sestimate

[1] 0.556156 2561.146495

Sgradient

[1] -8.273560e-05 -6.824815e-09 # Check the convergence
Scode

(1] 1 # Check the convergence
Siterations
[1] 26

# 2ND SOLUTION: USE FUNCTION maxLik, LIBRARY maxLik
# As maxLik maximizes a function we introduce the log-1lik
loglikgamma=function (param, x) {
alpha=param([1l]; theta=param[Z2]
sum (dgamma (x, shape=alpha, scale=theta, 1og=TRUE) )
}
# param.start has already been defined
library (maxLik)
out2=maxLik (loglikgamma, start=param.start, x=x)
There were 50 or more warnings (use warnings () to see the first 50)

vV VYV + 4+ +V YV VYV

25
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> out?2

Maximum Likelihood estimation

Newton-Raphson maximisation, 22 iterations
Return code 1: gradient close to zero
Log-Likelihood: -162.2934 (2 free parameter(s))
Estimate(s): 0.5562315 2560.365

Comments:
e Both functions are based on the Newton-Raphson method.
e We can use the gradient and the Hessian matrix to improve results.
e We can control the process changing some parameters values (tolerance, maximum number of
iterations, ...).
e Other procedures are available to maximize the log-likelihood.

26
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COMPLETE GROUPED DATA
e We must write the likelihood considering the mass probability associated with each group.

e Let us assume that there are £ groups and that group j, with n; observations, is limited by values Ciy

. . . . k n; . . .
and c;. The likelihood functionis L(0) = | |j=1(F(cj |10)—F(c, |6?)) and the log likelihood is
k
(o= n In(F(c,|0)-F(c;|0))

e Example 13.5 - From Data Set C, determine the maximum likelihood estimate of an exponential
distribution.

F(x|0)=1-¢™"; F(c,|0)~F(c, |0)=e " ="
The log-likelihood is then
0(6) =99 x ln(l — e ) +42 % 1n(e‘7500/‘9 _ g 173000 ) 413 ln(e—300000/9 B 0)

Using Microsoft Excel or another numerical procedure to maximize the log-likelihood we get
0 =29720.77 and ¢(6) = —406.03.

Exercise: check the results using R and EXCELC

27
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TRUNCATED AND CENSORED DATA

e Censored data: Non-censored observations are individual points and censored observations are
grouped data.

e Truncated data: More challenging. We must keep in mind that some values of the r.v. cannot be
observed.

e Klugman, Panjer and Willmot (Loss Models) pointed out that there are two ways to proceed but it is
important to underline that these ways correspond to two different models. Note that in both
situations we only observe the values above the truncation points.

First model — We want to estimate the distribution of the truncated values (less interesting case).

Second model — We want to estimate the model behind the values without truncation (more interesting
case).

e Example 13.6 - Assume the values in Data Set B had been truncated from below at 200. Using both
methods estimate the value of « for a Pareto distribution with & =800 known. Then use the model to
estimate the cost per payment with deductibles of 0, 200 and 400.

As data has been truncated at 200 we only consider observations above 200 (14 observations)

28



Instituto Superior de Economia e Gestao

First model — We are assuming an ordinary deductible — the payment is the amount on excess of 200 — so
we need to shift the data by subtracting 200.

In this model we will consider that the shifted data follow a Pareto distribution with unknown « and

60 =800. The density and the log-likelihood are

f(x|a,0=800)= @800 , x>0, >0 lLa)=>" (lna+aln800—(a+1)ln(800+x.))
(800 +x)*" i /

n
—nx1n800 + ZI;ZI In(800 + x;)

' n n '
K(a)=;+nxln800—zj=11n(800+xj) la)=0=a =

We get & =1.348191. Then, using this setup our estimate is that, when a deductible of 200 is in
force, the cost per payment follows a Pareto distribution with & =1.348191 and 8 =800. The
expected value of a payment is 2297.59 = 800/(1.348191-1).

Because data have been shifted it is not possible to estimate the cost with no deductible. The distribution

was assumed for the payments when a deductible of 200 is in force.

For a deductible greater than 200, the cost per payment can be estimated (see next slide)

29
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For a deductible of 400, we must impose a new deductible of 200 to our shifted data. The expected
cost per payment is given by (theorem 8.3):

E(X)—-E(X "200)

E(X —200| X >200) =
1- F(200)

Using Loss Models’ appendix, we get

E(X)=% and E(XA200)=L[1—( 0 ja ]

a—1 200+6

Then

0.348191

E(X)—E(X~200) 0 384080191 X(zos(ﬁ;ooj

1-F(200) = go0 A ~2871.90
(200+800j

E(X =200| X >200) =

30
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Second model = The goal is to fit a model for the original population, knowing that data were truncated
at 200. The density of the observed values is now (x > 200, a >0)

@ 800*
a+l
— 800 + “
(x| a.0=800) =/ (¥12:0=800) _ (800+x)"" _ 1000 _
1- F(200| &, 0 = 800) 800* (800 +x)”
(800+200)"

Note that the values x; are the original ones (except those below 200 that are not observed).
Uar) = Z’;zl(lna +a1n1000 - (a +1)In(800 + x,))

, n | n n
/()= Zj_l(;+lnlOOO—ln(800+xj)j :;+nxlnlOOO—zjzlln(800+xj)

n
—nx1n1000+ > " In(800 +x,)

/() =0 @3: —nxIn1000+ )" In(800+x,) < a =

We get & =1.538166, i.e. the cost per payment without deductible follows a Pareto distribution
with ¢ =1.538166 and 8 =800.

31
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The introduction of a deductible of 200 originates an expected cost per payment given by

0.538166
800 X( 800 )
E(X)—-E(X"200) 0.538166 \ 200+ 800 ~1858.16
1- F(200) - 200 1.538166 = '
200+ 800

As it is natural (we are using a different set of hypotheses), this value is different from that obtained
with the first model. Note that we can also estimate the probability to report a claim, assuming that a
claim occurred. This probability is 0.7095=1- F(200| &, 0)

The introduction of a deductible of 400 originates an expected cost per payment given by

0.538166
E(X)-E(X"400) 0 52(:3(166 i (40532300)
1 - F(400) = Q00 ) -3®1ee ~2229.80

400 + 800
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Example 13.7 — Estimate a gamma model for the time to death for Data Set D2 (we skipped the Pareto case
as there is no solution using this setup)
In Data Set D2 we faced 4 different situations

Contribution to | Meaning of x

Situation the likelihood
1 | Subjects are observed from time d=0 and died | f(x|8) Time of death
at time x (observed during the period of the
study). No truncation nor censoring.
2 | Subjects are observed at time d=0 and didn’t | 1-F(x|0) Time of censoring
die during the period of the study. No
truncation but censoring.
3 | Subjects are observed from time d>0 f(x|6) Time of death

(truncation) and died at time x (no censoring) | 1-F(d |0)

4 | Subjects are observed at time t>0 (truncation) | 1-F(x|8&) Time of censoring
and didn’t die during the period of the study 1-F(d|0)
(censoring)
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It is straightforward to write the contributions to the likelihood (or to the log-likelihood). For instance:
Obs 1 - d =0 (no truncation); x =0.1 (censoring): 1 - F(0.1)

Obs 4 — d =0 (no truncation); x = 0.8 (no censoring): f(0.8)

Obs 31— d = 0.3 (truncation); x =5 (censoring): (1-F(5.0))/(1—F(0.3))

Obs 33 — d =1.0 (truncation); x = 4.1 (no censoring): f(4.1)/(1 —F(l.O))

Sometimes it is useful to get a single expression for all the situations. Using d=0 for the no truncation
situation and noting that (0| 8) =0 we can rewrite the contribution to the likelihood from cases 1 and 2
(SO 1-F(x|0)
1-F(d|0) 1-F(d|0)
assuming value 1 when the x value corresponds to a death (0 otherwise) and we write the likelihood as

g (=v)x(A=F(x; |@)+v, x f(x;]0)
Lo)=11. “F(d 10

respectively (with d=0 for both cases). Then we define a dummy variable, v,

and the log likelihood as /() = Zj.zl(ln((l—vj)x(l—F(xj 10)+v,x f(x;]10))-In(1-F(d, |9))).

Now you can compute a solution using EXCEL or R. Exercise: Do it using EXCEL
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gamma model (using R).

> d=c(rep(0,30),0.3,0.7,1.0,1.8,2.1,2.9,2.9,3.2,3.4,3.9)
>x=¢(0.1,0.5,0.8,0.8,1.8,1.8,2.1,2.5,2.8,2.9,2.9,3.9,4.0,4.0,4.1,4.8,4.8,4.8,
+ rep(5.0,12),5.0,5.0,4.1,3.1,3.9,5.0,4.8,4.0,5.0,5.0)
>v=c(rep(0,3),1,rep(0,5),1,1,0,1,0,0,1,rep(0,16),1,1,rep(0,3),1,0,0)
>
> minusloglikgammal=function(theta){
+ -sum(log((1-v)*(1-pgamma(x,shape=theta[1],scale=theta[2],log=FALSE))+
+ v*dgamma(x,shape=theta[1],scale=theta[2],log=FALSE))-
+ log(1-pgamma(d,shape=theta[1],scale=theta[2],log=FALSE)))
+ }
>
> theta.start=c(3,2)
> out=nIm(minusloglikgammal,theta.start)
>out
Sminimum
[1] 28.52685
Sestimate
[1] 2.616737 3.311384
Sgradient
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[1] 1.026956e-05 3.390297e-06
Scode

[1] 1

Siterations

[1] 14

The solution is then ¢ =2.616737 and § =3.311384.
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VARIANCE AND INTERVAL ESTIMATION

e [tis not easy to determine the variance of the maximum likelihood estimators. In most situations we
need to approximate the variance which can be done when “mid regularity conditions” are verified.

There are many ways to write those conditions.

e Theorem 15.5 — Assume that the pdf (pf in the discrete case) f(x| &) satisfies the following for & in an

interval containing the true value (replace integrals by sums for discrete variables):

i. Inf(x|@) isthreetimes differentiable with respect to 6.
0
ii. ".% f(x|8)dx =0 - This formula implies that the derivative may be taken outside the integral

and so we are just differentiating the constant 1 (the main idea is that we can swap the
derivation with the integration - the limits of the integral cannot be functions of 9).

2
iii. Ia—z f(x|8)dx =0 - This formula is the same concept for the second derivative
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Inf(x|8)dx <0 - This inequality establishes that the indicated integral exists

2

82

— 0 < x|
[reio_

and that the expected value of the second derivative of the log likelihood is negative.

There exists a function f(x|#) such that

< H(x).

jH(x)f(x|9)dx<oo with Iaa—;lnf(x|9)dx

This inequality guaranties that the population is not overpopulated with regards to extreme
values.

Then the following results hold:

As n — o, the probability that the likelihood equation (L'(6) = 0) has a solution goes to 1.
As n — oo, the distribution of the mle én converges to a normal distribution with mean 6 and

variance such that 7(6) Var(én) — 1 where

2

2
1(0) =-n E(;QZ In £(X | 9)) = nE(%ln f(X| e)j
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Comments to Theorem 13.5
o The quantity /(@) is called Fisher’s information (see Cramer-Rao Lower bound in “Review of ...”)

-0 -

o Item ii can be written as ——
1(0)

n(0;1)

o The theorem assumes an i.i.d. sample. A more general version of the result can be established using

o’ 0 i
1(0) :_E(892 €(9X19X2’.”’Xn)J :E(%€(0|X19X297Xn)}

o If there is more than one parameter, the result can be generalized, and the maximum likelihood
estimators will follow an asymptotic multidimensional normal distribution. /(&) is now a matrix

with its (r,s) element given by

82
1(0), , =—-E
’ 06.00

r N

£(9|X1,X2,---,Xn)j

o The inverse of Fisher’s information matrix is the Cramer-Rao lower bound for the variance of
unbiased estimators of @, that is to say, no unbiased estimator is asymptotically more accurate
than the maximum likelihood estimator.
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o When Fisher’s information matrix depends on 8 we estimate it using[(é). When I(é) is difficult to

obtain we can approximate it using the observed information I(é) ~ —H(é), i.e. using the Hessian

matrix of the log likelihood at 8 = 0

o Example 13.9 — Estimate the covariance matrix of the mle for the lognormal distribution. Then apply
this result for Data set B.

Note: When using the lognormal it is usually more adequate to take logarithms of the observed values
and to use the normal (gaussian) distribution.

L(u,0)= ﬁ;exp(— (lnxj _2/1) J

X o2 20

) (lnxj—,tl)2
ﬁ(,uao'):Zj:l —lnxj—lna—ln(\/z_)_ 20°
ol ; (lnxj_“) o (Inx; —u
R Ny VR
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2 2
%_Zn _l_(_z)(lnxf —,u) o _l_'_(lnxj —,u)
oo o 20° A o o’
azg_zn —_1 —_L azg _Zn _2 lnxj_ﬂ __zzn ll’lxj—,u
o “iNs?) o dudo = (2 o’ B e’

62£ _Zn 1 +(_3)(lnxj_lu) n _3211 (lnxj_;u)

2T 2] 2 2 2
oo o o ol

Taking expected values

0%/ 0%/ . E(lnX)—ﬂ
e o

ou’ o ouoo

2 7 - 4 2
oo o J=1 o o o o

2
2 , EllnX. — . O
E(@ fj:n_gz ( j :u):n_3z.o'_4:_2_n
Fisher’s information matrix and lower bound
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2 %

](,UO' ' andl,ua =
2n

As the information matrix depends on the parameter o we must estimate the matrix. First we estimate
u and o (for this purpose only the estimation of o is necessary)

oy |z 3o Dot
(o)
<%’Z == n | (lnxj—u)2 == Zn (lr’:x.—[t)z
oo =012 o o =0 &z\/ U
L \ ~ n

And we will use the asymptotic covariance matrix

_/0

Vﬁr(,[t,é') ([1 (5‘ =
o
o

Now using Data Set B we get (Note that the number of observations is too low to use an asymptotic

approximation)
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> # Example 13.9 - solution following the book
> x=c(27,82,115,126,155,161,243,294,340,384,457,680,855,877,974,1193,1340,1884,2558,15743)
> n=length(x); mu=sum(log(x))/n; sig2=sum((log(x)-mu)”2)/n; sig=sqrt(sig2)
> mu; sig2; sig
[1] 6.137878
[1] 1.930456
[1] 1.389408
> |=matrix(c(n/sig2,0,0,2*n/sig2),nrow=2,byrow=TRUE)
> |
[,1] [,2]
[1,] 10.36025 0.00000
[2,] 0.00000 20.72049
> mat_V=solve(l)
> mat_V
[,1] [,2]
[1,] 0.0965228 0.0000000
[2,] 0.0000000 0.0482614

43



Instituto Superior de Economia e Gestao

Example 13.10 — Estimate the covariance matrix in example 13.9 using the observed information
> # example 13.10 - Following the book
> sig3=sig2*sig; sigd=sig2*sig2;
> H=matrix(c(-n/sig2,-(2/sig3)*sum(log(x)-mu),-(2/sig3)*sum(log(x)-mu),
n/sig2-(3/sigd)*sum((log(x)-mu)”2)),nrow=2,byrow=TRUE)
>H
[,1] [,2]
[1,] -1.036025e+01 -3.973669e-15

[2,] -3.973669e-15 -2.072049e+01
> matV_H=solve(-H)
> matV_H

[1] [,2]
[1,] 9.652279e-02 -1.851064e-17
[2,] -1.851064e-17 4.826140e-02
>
> #using numerical optimization
>

> minuslogliklognorm=function(theta){
+ -sum(-log(x)-log(theta[2])-0.5*log(2*pi)-0.5*(( (log(x)-theta[1]) / theta[2] )*2))
+ }
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> # Be aware of the starting point!
> # Numerical optimization could be erroneous (Hessian matrix)
> theta.start=c(6,2)
> out=nIm(minuslogliklognorm,theta.start,hessian=TRUE)
Warning messages:
1: In log(theta[2]) : NaNs produced
2: In nim(minuslogliklognorm, theta.start, hessian = TRUE) :
NA/Inf replaced by maximum positive value
> out
Sminimum
[1] 157.7139
Sestimate
[1] 6.137875 1.389408
Sgradient
[1] -2.713500e-06 -2.659279e-07
Shessian
[,1] [,2]
[1,] 10.360257841 -0.004526871
[2,] -0.004526871 20.710188098
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Scode

[1]1

Siterations

[1] 7

> HH=outShessian

> solve(HH)

[,1]
[1,] 9.652270e-02
[2,] 2.109811e-05

Instituto Superior de Economia e Gestao

# HH is the hessian of minus the log likelihood, i.e. HH is equal to
minus the hessian of the likelihood
# inverse of HH

[,2]

2.109811e-05

4.828542e-02
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o What can we do when our interest is about a function of the parameters?

Estimation of a function of the parameters

Example: Assume that our interest, in the last couple of examples, was about the expected value of X,

thatis E(X) =exp(u+ o?/2). The point estimator is easy to obtain, using the invariance property of

the mle, and we get E(X) =exp(/+ &> /2). What are the expected value and the (approximate)
variance of this estimator?

1n>

o Theorem 13.16 — (Delta method) Let X, = (X XZn,---,X,m)T be a multidimensional variable of

dimension k based on a sample of size n. Assume that X is asymptotically normal with mean & and
covariance matrix X/ n, where neither 8 nor X depend on n. Let g be a function of k£ variables that is

totally differentiable. Let G, = g(X,,,X,,,---. X},). Then G, is asymptotically normal with mean g(6)
and variance (0 g)TZ(ag)/n, where Og is the vector of the first derivatives, that is,
og =(0g/06,,0g/00,, --,0¢/86,)" anditis to be evaluated at &, the true parameters of the original

random variable.
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o Comments:

o There are several presentations of the delta method

o When k£ =1, the theorem reduces to the following statement: Let 0 be an estimator of @ that has
an asymptotic normal distribution with mean & and variance o /n. Then g(é) has an asymptotic

normal distribution with mean g(6) and variance g'(6)° x(c” / n).

o Example 13.12 — Use the delta method the approximate the variance of the mle of the probability that
an observation from an exponential distribution exceeds 200. Apply this result to Data Set B.

As it is well known, the mle estimator of & is 0= X with E(é) =@ and Var(é) =6%/n.
We want to estimate Pr(X > 200) =% = 9(0)
Pr(X >200)=g(9) = e 20000

Delta method:

2 g2 2 -400/0
Eg(0))~ g(0)=¢>" and var(g(d))~ g'(6) Var(é)=(%e_2°°/9j %JOOH;
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Application to Data Set B: n =20; Estimate: 6 =1424.4

Note that the sample size is too small to use asymptotic results!

2 -400/1424.4
200 e

Pr(X > 200) = 2(d) = e 2% = 0.8690 var( 2(0)) ~ =0.000744402
( )=2(0) (2)) 20x1424.42

95% Confidence Interval:  0.8690 + 1.96 x v/0.000744402, that is (0.8155; 0.9225)

Other approaches are possible in this case: The idea can be to compute a 95% Cl for 8 and then
transform it by applying the function exp (— %) to both bounds. To compute the Cl for 8 we can
use:

e The asymptotic distribution of the mle (assuming that n is large enough). In this case we

obtain (990.3569; 2535.735) for 6 and (0.8171; 0.9242) for the required probability.

e The exact distribution of the mle (best solution) as the distribution is known for this case,

2% ~Xta0)- The 95% Cl for 8 is (960.1342; 2331.924) and (0.8120; 0.9178) for the

probability.
The results are quite similar (in this example) even using a small sample.
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o Example 13.13 — Construct a 95% confidence interval for the mean of a lognormal population using
Data set B. Compare this to the more traditional confidence interval based on the sample mean

Note that the sample size is too small to use asymptotic results!

Usual method
X+1.96xs5/\n,i.e. 1424.4+1.96x3435.04/~/20, that is (-81.07, 2929.87).
Note that this interval includes values that are not admissible (E(X) = g(8) > 0).

Delta method

og
6’{#} g(u,0)=exp(u+o’/2) og = g“ :{ g(“"’)}
o 98| |og(u,o)
oo

~ | A A 2 2[1 0
0 = {l Var(H):E: o /n 5 0 -7 (see example 15.9)
o n 0 o°/2n)| n|0 1/2
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Var(g(é)) ~(0g)' Z(0g)/n=g(u,0) og(u, O')](O’;

2

:‘q

2
o)
n

A2
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g(u,o)
o g(u,0)
g(u,0)

[e(u.0) o g(u, 0')/2]{
o g(u,0o)

T Ixex
) P

From example 15.9 we know that the mle estimates are 1 =6.1379 and 6 =1.3894. Then

O
(1,0)* + — &, o)’

Vﬁr(g(é)) ~ [Gn

o X €X A+0
2 Pl A 2

The 95% confidence interval is then 1215.75F1.96 x~/280444 , that is, (177.79; 2253.71)

] = 280444
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NON-NORMAL CONFIDENCE INTERVALS
o Inthe previous section the confidence intervals are based on 2 assumptions:

1. The normal distribution is a reasonable approximation for the true distribution of the maximum
likelihood estimators (large samples);

2. When there is more than one parameter, the construction of separate confidence intervals is an
acceptable procedure.

o We will see an alternative procedure (the result is still asymptotic) which let us build confidence regions
to answer to point 2.

o The new procedure to define confidence intervals is based on the likelihood ratio tests (to be formally
presented in chapter 16 of Loss Models).

o Theideais to include in the confidence interval (region) the values of & with a greater likelihood, i.e.

our likelihood interval will be defined as {6? 4(0) > c} with ¢ < /(0) to guarantee that the interval is not
empty.
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o The question is how to define ¢ in such a way that the procedure produces a 100(1 - )% confidence
region?
A case by case solution can be searched for (and for some cases a solution founded) or we can use an
asymptotic result using ¢ = f(é) —0.5x g, (be aware of a typo in the book — ¢ = 6(67) -0.5xgq,,, instead
of the correct solution) where ¢, is the 1—a quantile of a chi-square distribution with degrees of

freedom equal to the number of estimated parameters.

o Example 13.14 — Use this method to construct a 95% confidence interval for the parameter of an
exponential distribution. Compare the answer to the normal approximation, using Data Set B.

Exponential distribution: /(8) = Z';zl (— In@—x; /6?): —nln@-nx/0 and O=%x.

Data SetB: n=20,x =1424 4,

Normal approximation

n nx n 2nXx n 2nX n 2n n L6
© 0 & © 0> 6’ ©) (92 0° j (92 92) 0> ©) n

The confidence interval is x ¥1.96 x )?/\/Z, that is, (800.129; 2048.67)
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Non — normal approximation

(@) =—nlnX —n; q,, =3.841 (we are estimating 1 parameter)

The interval is given by
—nlnf-nx/0=2-nlnx-n—-0.5x3.841<nf+x/0<Inx+1+1.9205/n

which has to be solved numerically (Inx +1+1.9205/20 =8.35753). Using EXCEL’s solver we get
the interval (946.788; 2285.246)

Comment: To be rigorous we need to prove that the equation Ind+x /6 =Inx —-1-1.9205/n has
only 2 roots and that the inequality is strict between the roots.

Challenging question: are you able to prove that?
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o Example 13.15 — In example 13.4, the mle for a gamma model for Data Set B were & =0.55616 and

0 = 2561.1. Determine a 95% confidence region for the true values.

Gamma distribution

o la,B) =Z’;_1((a—1)1nxj —%—aln@—lnf(a)J = (a—1)2j=11nxj —%—naln&—nlnl“(a)

o U(@&,0)=-162.2934
o c=/(a, é) —0.5x¢q, =-165.2889 (using a ;((22))

We must solve the inequality

122.7576 x (ax —1) —%‘)88— 200ln 0 -20InT'(ax) > -165.2889

>x=c(27,82,115,126,155,161,243,294,340,384,457,680,855,877,974,1193,1340,1884,2558,15743)
>
> minusloglikgamma=function(theta){
+ -sum(dgamma(x,shape=theta[1],scale=theta[2],log=TRUE))
+ }
>
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> |loglikgamma=function(a,b){

+ sum(dgamma(x,shape=a,scale=b,log=TRUE))

+ )

>

> theta.start=c(mean(x)*mean(x)/var(x),var(x)/mean(x))
> out=nIm(minusloglikgamma,theta.start,hessian=TRUE)

> out
Sminimum
[1] 162.2934

Sestimate
[1] 0.556157 2561.146543

Sgradient
[1] -6.110668e-06 4.771822e-10
Shessian

[,1] [,2]
[1,] 82.442844018 7.808613e-03
[2,] 0.007808613 1.695060e-06
Scode
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[1] 1
Siterations
[1] 35

> # Independent confidence intervals

> theta_mv=outSestimate

> invH=solve(-outShessian) # The function is minus the loglikelihood
> theta_mv_var=-diag(invH)

> linf=theta_mv-1.96*sqgrt(theta_mv_var); Isup=theta_mv+1.96*sqrt(theta_mv_var)
> linf; Isup;

[1] 0.2686390 555.9871246

[1] 0.843675 4566.305962

>

> # Confidence region

> q=gchisq(0.05,2,lower.tail=FALSE)

> cc=-outSminimum-0.5*q # The function is minus the loglikelihood
>

> a=seq(.5*linf[1],2*Isup[1],(2*Isup[1]-.5*linf[1])/81)

> b=seq(.5*linf[2],2*Isup[2],(2*Isup[2]-.5*Iinf[2])/81)

>
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> z=array(0,dim=c(length(a),length(b)))

> for(i in 1:length(a)) {

+ for(j in 1:length(b)) {

+  z[i,j]=loglikgammal(a[i],b[j])

+ }

+ }

> persp(a,b,z,theta=30,phi=30,ticktype="detailed")
> contour(a,b,z,level=c(cc))
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